
v.1

Mercury technical manual
October

2023

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 1

Mercury technical manual

v.1

v.1
Mercury technical manual

1. Introduction
2. Connection details

2.1 Pin assignments
2.2 Connecting multiple units
2.3 USB2Mercury
2.4 Mercury Power Hub
2.5 Power-up protocol

3. Communication protocol
3.1 Overview
3.2 Protocol
3.3 Request packet

3.3.1 Overview
3.3.2 Checksum description
3.3.3 Unique servo ID

3.4 Status packet
3.4.1 Overview
3.4.2 Error description

4. Instructions
4.1 Instructions table
4.2 Instruction details

4.2.1 PING
Instruction packet
Status packet

4.2.2 READ
Instruction packet
Status packet

4.2.3 WRITE
Instruction packet
Status packet

4.2.4 REG_WRITE
Instruction packet
Status packet

4.2.5 ACTION
Status packet

4.2.7 RESET
Status packet

4.2.7 REBOOT
Status packet

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 2

4.2.8 CLEAR
Status packet

4.3 Using the broadcast ID
5. Control registers

5.1 Register table
5.2 Register limits
5.3 Register details

5.3.1 Control enable
5.3.2 Baud rates
5.3.3 Acknowledgement packet response time

5.4 Operating modes
5.4.1 Operating modes table
5.4.2 Input modes table
5.4.3 Mercury position control

5.4.3.1 Position controller architecture
Proportional (position) gain
Proportional (velocity) gain
Integral (velocity) gain
Feedforward (velocity & current) gains
Angular velocity profile
Acceleration profile
Profile modes

5.4.3.2 Joint (single-turn) and multi-turn position modes
5.4.2.3 Clockwise (CW) and counterclockwise (CCW) angle limits
5.4.2.4 Horn position offset

5.4.4 Mercury velocity control
5.4.4.1 Wheel controller architecture

Target angular velocity
Proportional (velocity) gain
Integral (velocity) gain
Feedforward (current) gain
Acceleration profile

5.4.5 Torque mode
5.4.6 Stepper mode

5.5 Is moving
5.6 Hardware status

6. Diagnostics
6.1 LED states

7. ROS2 integration
7.1 Github repositories
7.1 Building a ROS2 Mercury example

for John Cooper • Aug 15, 2012

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 3

1. Introduction
This document provides detailed technical information on the Mercury M1 digital servo from Robot Articulation.

2. Connection details

2.1 Pin assignments

Mercury servos have a number of input and output connectors:

Opto-isolated input / output connector:

PIN1: collector output
PIN2: emitter output
PIN3: +5v external supply for inputs
PIN4: step pulse input
PIN5: step direction input

CAN bus input/output:

PIN1: CAN HI
PIN2: CAN LOW

USART input / output (half duplex):

PIN1: usart IO
PIN2: GND

Servo power supply (DC):

PIN1: +48v (20A)
PIN2: GND

USB 2.0B

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 4

2.2 Connecting multiple units

Multiple Mercury digital servos may be connected in parallel. Each servo must be configured to have its own unique
address.

2.3 USB2Mercury

In order to control (or configure) Mercury digital servos from a PC, a USB2Mercury unit should be used.

The USB2Mercury unit contains:
● a USB 2.0 type A connector which connects to a USB port on a PC
● a single 2-way XH-series header to connect to a Mercury servo
● surge protection

The USB2Mercury unit is connected in the following way:

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 5

Please see the USB2Mercury document for more details.

2.4 Mercury Power Hub

Mercury digital servos may be connected in parallel to form a network of Mercury servos.

To facilitate such parallel operations, a Mercury Power Hub should be used. The Mercury Power Hub has the
following capabilities:

● contains an in-build USB2Mercury to interface between a PC's USB port and a network of Mercury servos
● accepts a single USB 2.0 type A connection from a PC
● accepts an external 48V DC power source via a single 2-way PCB-mounted barrier terminal to supply a

maximum of 30A. Fused and surge-protected
● provides 5 (in-parallel) 2-way WR-TBL 311 series power output connectors to power Mercury servos
● provides 5 (in-parallel) 2-way XH headers to connect directly to Mercury servo comms io connectors

2.5 Power-up protocol

When a Mercury digital servo is powered-up, the red LED will be illuminated for 1 second. The red LED will then be
switched off and the Green LED illuminated. The exact state of the LED will depend on the state of the servo. See the
LED states for detailed information.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 6

3. Communication protocol

3.1 Overview

The USB2Mercury communicates with the connected Mercury digital servos, by sending and receiving a series of
data packets. There are two types of packets - Request and Status packets. Request packets are sent from the
USB2Mercury unit to the Mercury servos. Acknowledgement packets are sent from Mercury servos to the
USB2Mercury unit.

3.2 Protocol

Communication between Mercury servos and the USB2Mercury unit is performed using an asynchronous serial
protocol of 8 bits, with 1 stop bit and no parity.
See the table (below) for details on supported baud rates.

3.3 Request packet

3.3.1 Overview

The structure of the Request Packet is a follows:

Start bytes Reserved Unique
servo ID /
Broadcast
ID (0xFE)

Length
(2 bytes)
(ParamN
+ 3)

Instruction Param1 ... Param
N

Checksum
(2 bytes)
(see
description
below)

0xFF 0xFF 0xFD 0x00 ID Length Instruction Param1 ... Param
N

Checksum

3.3.2 Checksum description

The 16-bit checksum is calculated using the CRC-16 IBM/ANSI scheme with a x16+ x15+ x2+ 1 polynomial with a
0x8005 polynomial representation.

3.3.3 Unique servo ID

A servo ID in the range of 0→252 may be specified in the request packet.

Alternatively, a broadcast ID (0xFE) may be specified where applicable.
This has the effect of sending the instruction packet to all Mercury servos on the network.

3.4 Status packet

3.4.1 Overview

The Status Packet is sent by a Mercury servo in response to a Request Packet. The structure of the Status packet is
as follows:

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 7

Start bytes Reserved Unique
servo ID /
Broadcast
ID (0xFE)

Length
(2 bytes)
See
below

Instruction Error
See
below

Param1 ... ParamN Checksum
(2 bytes)
(see
description
)

0xFF 0xFF 0xFD 0x00 ID Length Instruction Error Param1 ... ParamN Checksum

The 16-bit length field is the field count of:
Instruction + error + CRC_Low + CRC_High + number of parameters.

Please note that for RESET and REBOOT instructions, a zero is always returned in the Error byte.

3.4.2 Error description

Bit 7 Bit 6 ~ bit 0

Alert Error number

The Alert bit is set when an error condition has been encountered. The Hardware status registered should be read in
order to determine the nature of the error.

The error number indicates the problem encountered with the processing of the instruction packet:

Value Error number Description

0x01 Process failure Failed to process the sent instruction packet

0x02 Instruction error Undefined instruction specified, or
a ACTION instruction is issued with no pending reg_write instruction

0x03 CRC error The CRC of the instruction packet does not match the calculated CRC.

0x04 Data range error Set if an attempt has been made to write data that is outside the min/max
range of the relevant register

0x05 Data length error Set when an attempt is made to write data that has a length that is less than
the target register’s length

0x06 Data limit error The data to be written to the target register is outside of the register’s limit
value.

0x07 Access error 1. An attempt is made to write to an address that is read-only
2. An attempt is made to read from a register that is write-only
3. An attempt is made to write to the non-volatile region of the register

table when the control enable register is equal to 1

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 8

4. Instructions

4.1 Instructions table

The Mercury servo range supports the following instructions:

Instruction Description Value Number of parameters

PING Returns a status servo from the targeted servo. No
servo update is performed.

0x01 0

READ Direct read of values from the register table. 0x02 4

WRITE Direct write to the active register table. 0x03 4+

REG_WRITE Rx packet is stored in a shadow rx packet. This
instruction does not affect the current operation of
the servo.

0x04 4+

ACTION Commit the previously-written shadow rx packet to
the active register table.

0x05 0

RESET Reset the servo to the default (factory) settings 0x06 0

REBOOT Reboots the servo 0x08 0

4.2 Instruction details

4.2.1 PING

Instruction packet

The PING instruction is used to request a status packet from a particular Mercury servo specified by an id.

Instruction packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo. The broadcast ID (0xFE) can also be specified. For further
details on the broadcast ping, see here.

6 0x03 Length (low byte)

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 9

7 0x00 Length (high byte)

8 0x01 PING instruction

9 ~ Calculated checksum (low byte)

10 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x07 Length (low byte)

7 0x00 Length (high byte)

8 0x55 Instruction

9 ~ Error - 0x00 if no error

10 ~ Model number LSB

11 ~ Model number MSB

12 ~ Firmware version

13 ~ Calculated checksum (low byte)

14 ~ Calculated checksum (high byte)

4.2.2 READ

Instruction packet

The READ instruction is used to read data directly from the register table of a Mercury servo
Packet details:

Byte Value Description

1 0xFF Start byte 1

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 10

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC (252) ID

6 0x07 Length (low byte)

7 0x00 Length (high byte)

8 0x02 READ instruction

9 0+ Register table start address (low byte)

10 0+ Register table start address (high byte)

11 1+ Number of bytes to read (low byte), starting from the (above) start address

12 0+ Number of bytes to read (high byte)

13 ~ Calculated checksum (low byte)

14 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 4+ Length (low byte)

7 0+ Length (high byte)

8 0x55 Instruction

9 ~ Error - 0x00 if no error

10 ~ Data byte 1

11 ~ Data byte N

N+6 ~ Calculated checksum (low byte)

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 11

N+7 ~ Calculated checksum (high byte)

4.2.3 WRITE

Instruction packet

The WRITE instruction is used to write data directly to the register table of a Mercury servo.
No status packet is returned if the broadcast ID is used.
Packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC (252) ID. The broadcast ID (0xFE) can also be specified.

6 N+5 Length (low byte) - the number of data bytes to be written + 5

7 N+5 Length (high byte)

8 0x03 WRITE_DIRECT instruction

9 0+ Start address (low byte)

10 0+ Start address (high byte)

11 0+ Data byte 1

... 0+ Data bytes 2→ N-1

11 + Number of data bytes 0+ Data byte N

11 + Number of data bytes + 1 ~ Calculated checksum (low byte)

11 + Number of data bytes + 2 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 12

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x01 Length (low byte)

7 0 Length (high byte)

8 0x55 Instruction

9 ~ Error - 0x00 if no error

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

4.2.4 REG_WRITE

Instruction packet

The REG_WRITE instruction results in the rx packet being stored in a shadow rx packet on the Mercury servo. No
update of the register table takes place. A REG_WRITE instruction has therefore no direct effect on the operation of
the Mercury servo.
The Pending shadow instruction register is set to 1 following a REG_WRITE instruction.
No status packet is returned if the broadcast ID is used.
Packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC (252) ID. The broadcast ID (0xFE) can also be specified.

6 N+5 Length (low byte) - the number of data bytes to be written + 5

7 N+5 Length (high byte)

8 0x03 REG_WRITE instruction

9 0+ Start address (low byte)

10 0+ Start address (high byte)

11 0+ Data byte 1

... 0+ Data bytes 2→ N-1

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 13

11 + Number of data bytes 0+ Data byte N

11 + Number of data bytes + 1 ~ Calculated checksum (low byte)

11 + Number of data bytes + 2 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x01 Length (low byte)

7 0 Length (high byte)

8 0x55 Instruction

9 ~ Error - 0x00 if no error

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

4.2.5 ACTION

Instruction packet

The ACTION instruction is used to update the register table with the data held in the shadow rx packet on a Mercury
servo. A Mercury servo will only execute an ACTION instruction if its Pending Shadow Instruction register has a
value of 1.
The Pending shadow instruction register is reset to 0 following an ACTION instruction.
No status packet is returned if the broadcast ID is used.
Packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 14

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x03 Length (low byte)

7 0x00 Length (high byte)

8 0x05` ACTION instruction

9 ~ Calculated checksum (low byte)

10 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x01 Length (low byte)

7 0 Length (high byte)

8 0x55 Instruction

9 ~ Error - 0x00 if no error

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 15

4.2.7 RESET

Instruction packet

The RESET instruction is used to reset the register table of a Mercury servo to the original factory defaults.
Packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x03 Length (low byte)

7 0x00 Length (high byte)

8 0x01 RESET instruction

9 0xFF: Reset all
0x01: Reset all except ID
0x02: Reset all except ID and Baud rate

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x04 Length (low byte)

7 0 Length (high byte)

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 16

8 0x55 Instruction

9 0 P1

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

4.2.7 REBOOT

Instruction packet

The REBOOT instruction is used to reboot the Mercury servo. All non-volatile register settings will be set to their
default values.
Packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x03 Length (low byte)

7 0x00 Length (high byte)

8 0x01 REBOOT instruction

9 ~ Calculated checksum (low byte)

10 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 17

5 0→0xFC
(252)

ID of the targeted servo

6 0x04 Length (low byte)

7 0 Length (high byte)

8 0x55 Instruction

9 0x00 P1

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

4.2.8 CLEAR

Instruction packet

The CLEAR instruction is used to reset the multiturn revolutions count to zero.

The Clear instruction can only be applied when contol_enable = 0x0. If control_enable = 0x1 and a CLEAR instruction is
sent, a Result Fail (0x01) will be set in the ERROR field of the Status Packet.

Packet details:

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x08 Length (low byte)

7 0x00 Length (high byte)

8 0x10 CLEAR instruction

9 0x01 P1

10 0x44 P2

11 0x58 P3

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 18

12 0x4C P4

13 0x22 P5

14 ~ Calculated checksum (low byte)

15 ~ Calculated checksum (high byte)

Status packet

Byte Value Description

1 0xFF Start byte 1

2 0xFF Start byte 2

3 0xFD Start byte 3

4 0x00 Reserved

5 0→0xFC
(252)

ID of the targeted servo

6 0x04 Length (low byte)

7 0 Length (high byte)

8 0x55 Instruction

9 0x00 ERROR: 0 || Result Fail (0x01) || hardware error

10 ~ Calculated checksum (low byte)

11 ~ Calculated checksum (high byte)

4.3 Using the broadcast ID

The broadcast ID (0xFE) can be specified for a number of instructions. For write operations, this is straightforward as
no status packet is generated for write operations.

For read operations, the broadcast ID is only supported for PING and READ_SYNC operations.

In order to avoid bus contention for broadcast read operations, each servo responds after a calculated delay.

● Calculate time_per_byte. e.g. 0.01s @ 1Mbs
● Calculate status_packet_length e.g. length == 14 for ping response
● Calculate wait_length = servo_id * status_packet_length
● Calculate delay = (wait_length * time_per_byte) + (3.0 * servo_id)

Using the calculated delay,, we avoid bus contention.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 19

5. Control registers

5.1 Register table

Non-volatile registers

Address Size Description R/W Range Default Value Notes

0 (0x00) 1 Model number minor R E.g. 0x01 for model
minor version 1

1 (0x01) 1 Model number major R E.g. 30 (0x1E) for
Mercury M1

2 (0x02) 1 Firmware version R

3 (0x03) 1 ID RW 0→252 1 (0x01) Note that the
USB2Mercury
reserves ID 253
(0xFD)

4 (0x04) 1 Baud rate RW 1→254 1 (0x05)
(1,000,000 BPS)

See table below

5 (0x05) 1 Acknowledgement packet
response time

RW 0→254 250 (0xFA) See details
below

6 (0x06) 1 Operating mode RW 0-3 2 (single-turn mode) See table below

7 (0x07) 2 Clockwise (CW) angle limit RW -8192→8191
(-π to π)

-8192 (-π) See servo
output position
details below

9 (0x09) 2 Counter-clockwise (CCW)
angle limit

RW -8192→8191
(-π to π)

8191 (π)

11 (0x0B) 1 Upper temperature limit RW 40→75 70 (0x46) Value in °C

12 (0x0C) 1 Lower input voltage limit RW 0→120 100 (0x64) Voltage (v) =
register value /
5.
e.g. 100⇔ 20V

If the supply
voltage falls
below this
figure, the
Control enable
register will be
set to 0;

13 (0x0D) 1 Upper input voltage limit RW 120→243 243 (0xF3) As per above.
240⇔ 48V

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 20

If the supply
voltage goes
above this
figure, the
Control enable
register will be
set to 0;

14 (0x0E) 2 Phase current limit RW M1: 0→6250 M1: 6250 (0x186A) Maximum phase
current in mA.

To avoid
damage to your
Mercury servo,
do not routinely
exceed the
rated torque
figure.

16 (0x10) 2 Angular velocity limit RW 0 → 3200 3200 (0xC80) 2000 equates to
2000 milli-rad/s.

18 (0x12) 2 Acceleration limit RW 0→48000 0 0 indicates the
maximum
possible
acceleration.

20 (0x14) 4 Horn position offset RW Single-turn:
-4096→4095
(-π/2 to π/2)

Multi-turn:
-4,177,920 →
4,177,919

0 See details
below.

24 (0x18) 2 Moving threshold RW 0 → 2,000 20 (0x0014) Moving velocity
threshold in
milli-rad/s. See
details below.

26 (0x1a) 1 Input mode RW 0 → 1 See input
modes for more
details.

Non-volatile default registers are copied to their volatile counterparts on reset or power-up.

27 (0x1b) 2 Default position proportional
gain (Kp)

RW 0 → 2000 16 (0xa0) See position
details below.

29 (0x1d) 2 Default Velocity feedforward
gain

RW 0 → 16383 0 See feedforward
details below.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 21

31 (0x1f) 2 Default current feedforward
gain

RW 0 → 1000 0

33 (0x21) 2 Default velocity integral
gain

RW 0 → 4000 2000 See velocity
integral details
below.

35 (0x23) 2 Default velocity proportional
gain

RW 0 → 4000 500 See velocity
proportional
details below.

37 (0x25) 2 Default angular velocity
profile

RW 0→Angular
velocity limit

300 See the angular
velocity profile
details below.

39 (0x27) 2 Default acceleration profile RW 0→Acceleration
limit

500 See
acceleration
profile details
below.

41 (0x29) 2 Reserved

... 5 Reserved

47 (0x2F) 1 Reserved

Volatile registers

Address Size Description R/W Range Default Value Notes

48 (0x30) 1 Control enable RW 0→1 0 See details
below.

49 (0x31) 1 Pending shadow instruction RW 0→1 0 1 = pending
REG_WRITE
instruction.

50 (0x32) 2 Reserved

52 (0x34) 2 Reserved

54 (0x36) 2 Position proportional gain
(Kp)

RW 0→ 2000 From default position
proportional gain (Kp)

See position
details below.

56 (0x38) 2 Velocity feedforward gain RW 0→
16,383

From default Velocity
feedforward gain

See
feedforward
details below.

58 (0x3A) 2 Current feedforward gain RW 0→
1000

From default current
feedforward gain

60 (0x3C) 2 Velocity integral gain RW 0→ 4000 Default velocity
integral gain

See velocity
integral details
below.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 22

62 (0x3E) 2 Velocity proportional gain RW 0→ 4000 Default velocity
proportional gain

See velocity
proportional
details below.

64 (0x40) 2 Reserved

66 (0x42) 2 Reserved

68 (0x44) 2 Angular velocity profile RW 0→Angular
velocity limit

From default angular
velocity profile

See the angular
velocity profile
details below.

70 (0x46) 2 Acceleration profile RW 0→Acceleration
limit

From default
acceleration profile

See
acceleration
profile details
below.

72 (0x48) 2 Reserved

74 (0x4A) 2 Reserved

76 (0x4C 2 Reserved

78 (0x4E) 4 Target position RW Single-turn:
0→16383
(-π to π)

Multi-turn:
-4,177,920 →
4,177,919

Value from actual
position register.

See servo
output position
section below

82 (0x52) 2 Target angular velocity RW 0→3200 0 Target angular
velocity in
milli-rad/s.
See details
below.
Only used in
continuous
rotation mode.

84 (0x54) 2 Target torque RW 0→value from
Torque limit
register.

0 Target torque in
units of 10
mNm. See
torque mode
details below.

86 (0x56) 2 Actual phase current R 1⇔ 1mA

88 (0x58) 2 Actual angular velocity R Angular velocity
in milli-rad/s.
e.g. 3200
milli-rad/s⇔ 3.2
rad/s⇔ ~30
rpm

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 23

90 (0x5a) 4 Actual position R Single-turn:
-8192→8191
(-π to π)

Multi-turn:
-4,177,920 →
4,177,919

- See servo
output position
section below

94 (0x5E) 2 Actual torque R Torque in units
of 10 mNm
100⇔ 1Nm

96 (0x60) 1 Actual voltage R Voltage =
register value /
10.
e.g. 200⇔ 20V

97 (0x61) 1 Actual temperature R Value in °C

98 (0x62) 1 Reserved

99 (0x63) 1 Moving R 0→1 Indicates if the
servo is moving.
See details
below.

100
(0x64)

1 Trajectory status R Indicates the
current
trajectory
status. See
details below.

101
(0x65)

2 Calculated angular velocity
profile trajectory

R

103
(0x67)

4 Calculated position profile
trajectory

R

107
(0x6b)

1 Hardware status R See details
below

Please note that two’s complement is used to represent all negative negative numbers.

5.2 Register limits

Each writable register has an associated minimum and maximum value. Write instructions made outside of valid
ranges will return an out-of-range status error, and no update will take place.
The following table details the data range for each register. 16 bit registers must be written atomically within the same
instruction packet.

Write
address

Description Min value Max value

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 24

Non-volatile

3 (0x03) ID 0 252 (0xFC)

4 (0x04) Baud rate 1 254 (0xFE)

5 (0x05) Acknowledgement packet
response time

0 254 (0xFE)

6 (0x06) Operating mode 0 4

7 (0x07) Clockwise (CW) angle limit 0 8191 (0x1FFF)

9 (0x09) Counter-clockwise (CCW) angle
limit

0 -8192 (0xE000)

11 (0x0B) Upper temperature limit 0 75 (0x4b)

12 (0x0C) Lower input voltage limit 100 (0x64) 120 (0x78)

13 (0x0D) Upper input voltage limit 120 (0x78) 243 (0xF3)

14 (0x0E) Phase current limit 0 6250 (0x186A)

16 (0x10) Angular velocity limit 0 3200 (0xC80)

18 (0x12) Acceleration limit 0 48000

(0xBB80)

20 (0x14) Home position offset Single-turn:
-4096
Multi-turn:
-4,177,920

Single-turn:
4095
Multi-turn:
4,177,919

24 (0x18) Moving threshold 0 2,000 (0x7D0)

26 (0x1a) Input mode 0 1

Non-volatile default registers are copied to their volatile counterparts on reset or power-up.

27 (0x1b) Position proportional gain 0 2000 (0x7D0)

29 (0x1d) Velocity feedforward gain 0 16,383 (0x3FFF)

31 (0x1f) Current feedforward gain 0 1000 (0x3E8)

33 (0x21) Velocity integral gain 0 4000 (0xFA0)

35 (0x23) Velocity proportional gain 0 4000 (0xFA0)

37 (0x25) Angular velocity profile 0 Angular velocity limit

39 (0x27) Acceleration profile 0 Acceleration limit

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 25

Volatile

48 (0x30) Control enable 0 1

49 (0x31) Pending shadow instruction 0 1

54 (0x36) Position proportional gain 0 2000 (0x7D0)

56 (0x38) Velocity feedforward gain 0 16,383 (0x3FFF)

58 (0x3A) Current feedforward gain 0 1000 (0x3E8)

60 (0x3C) Velocity integral gain 0 4000 (0xFA0)

62 (0x3E) Velocity proportional gain 0 4000 (0xFA0)

68 (0x44) Angular velocity profile 0 Angular velocity limit

70 (0x46) Acceleration profile 0 Acceleration limit

78 (0x4E) Target position Single-turn:
CW angle limit

Multi-turn:
-4,177,920

Single-turn:
CCW angle limit

Multi-turn:
4,177,919

80 (0x50) Target angular velocity 0 Angular velocity limit

82 (0x52) Target torque 0 Torque limit

96 (0x60) Pending shadow instruction 0 1

5.3 Register details

5.3.1 Control enable

This register controls the following:

Value Description

Bit 0 (R/W) 0:
● unlocks all non-volatile registers
● cuts all power to the motor

1:
● can only be set if the motor has already

been calibrated.
● locks all non-volatile registers
● enables the motor

Bit 1 (R/W) 1:
● Calibrates the motor. This causes the motor

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 26

to rotate by a small amount in order to align
the rotor with the zero position of the shaft
encoder. Maximum output movement =
0.0785 radians.
Cleared automatically when calibrated.

5.3.2 Baud rates

The supported baud rates of the Mercury servo are as follows:

Value Baud Rate

0 (0x00) 9600

1 (0x01) 19200

2 (0x02) 38400

3 (0x03) 57600

4 (0x04) 115200

5 (0x05) 1000000

The baud rate margin of error is set at < 3%.

5.3.3 Acknowledgement packet response time

This register controls the (approximate) elapsed time between the reception of the request packet and the transmission
of the acknowledgement packet. The elapsed time is given by 2μ seconds * the register value.

5.4 Operating modes

5.4.1 Operating modes table

Mode Value Description

Torque mode 0 Controls the output torque of the Mercury servo.

Makes use of:
● Acceleration limit
● Acceleration profile
● Torque limit
● Target torque
● Angular velocity limit

Continuous
rotation (Wheel)
mode

1 Controls the angular velocity of the Mercury servo.
● Rotates the servo at the target angular velocity.
● The direction bit (15) controls the direction of rotation.

Makes use of:
● Acceleration limit

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 27

● Acceleration profile
● Angular velocity limit
● Target angular velocity
● Velocity proportional gain (vKp)
● Velocity integral gain (vKi)
● Current feedforward gain cKff

Single-turn
(Joint) position
mode

2 Moves to the target position based on the specified velocity and acceleration profiles.

Makes use of:
● Home position offset
● CW & CCW angle limits
● Input mode
● Acceleration limit
● Acceleration profile (trajectory input mode only)
● Angular velocity limit
● Angular velocity profile
● Position proportional gain (pKp)
● Velocity feedforward gain vKff
● Velocity integral gain (vKi)
● Velocity proportional gain (vKp)
● Current feedforward gain cKff

Multi-turn
position mode

3 Moves to the target position based on the specified velocity and acceleration profiles.
Allows a (real) target angle to be specified that is greater than 360°. Maximum turns are
-256→256.

Makes use of:
● Home position offset
● Input mode
● Acceleration limit
● Acceleration profile (trajectory input mode only)
● Angular velocity limit
● Angular velocity profile
● Position proportional gain (pKp)
● Velocity feedforward gain vKff
● Velocity integral gain (vKi)
● Velocity proportional gain (vKp)
● Current feedforward gain cKff

Stepper mode 4 In this mode, digital pins D1 and D2 are used as STEP and DIRECTION inputs respectively.
Each step will advance the output horn (CW or CCW depending on the polarity of the
DIRECTION input pin D2) by 1/4096 revolutions.

Makes use of:
● Home position offset
● Acceleration limit
● Angular velocity limit

5.4.2 Input modes table

Input modes allow for different control strategies to be applied to input commands.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 28

Mode Value Description

Trajectory mode 0 In this mode, the Mercury servo generates a trajectory in order to traverse to the target
position. See profile modes for more details.

Position mode 1 In this mode, no trajectory profiles are applied. Instead, the resultant profiles are determined
only by the controller settings and the target position. The angular velocity limit is set by the
angular velocity profile register value.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 29

5.4.3 Mercury position control

5.4.3.1 Position controller architecture
For position control, Mercury servos use a 3-stage cascaded controller consisting of a:

● position controller
● velocity controller
● current controller.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 30

Proportional (position) gain
The position proportional component depends only on the difference between the goal position and the actual position.
In general, increasing pKp will increase the speed of the servo’s response. However, if pKp is too large, oscillations
could occur.

Proportional (velocity) gain
The velocity component depends only on the difference between the desired velocity and the actual velocity. As with
position proportional control, increasing vKp will increase the speed of the servo’s response. If vKp is too large,
oscillations could occur.

Integral (velocity) gain
The integral component sums the velocity error over time. The result is that even a small error term will cause the
integral component to increase slowly. The integral response will continually increase over time unless the error is zero,
so the effect is to drive the steady-state error to zero. Steady-state error is the final difference between the servo’s
actual velocity and the desired velocity. If the integral gain (vKi) is too small, the servo response will be sluggish. If vKi
is set too high, oscillation may occur.

Feedforward (velocity & current) gains
In position mode, the velocity feedforward quantity (vKff) is added to the calculated desired velocity value.

In wheel mode, the current setpoint is set directly from the current feedforward (cKff) quantity;
The same is also true in position mode, but only in Position input mode. In trajectory mode, the current setpoint is
generated from the trajectory.

The PWM signal that is (ultimately) sent to the motor is therefore influenced by these feedforward gains.

Angular velocity profile
The angular velocity profile register maintains the trajectory velocity profile in Joint and Multi-turn operating mode.
Profile angular velocity is represented in milli-rad/s. The maximum angular velocity is approximately 20 rpm. That is, a
register value of 1000 equates to 1000 milli-rad/s⇔ 1 rad/s⇔ 9.549 rpm.

Angular velocity profile is used only in Position control mode.

Acceleration profile
The acceleration profile register maintains the acceleration profile for the relevant profile type. Profile acceleration is
represented in units of milli-rad/s2 . Valid values are 0 → 48000, representing a maximum profile acceleration of 48
rad/s2.

When set to 0, the applied acceleration corresponds to the maximum acceleration of the motor.

Acceleration profile is used in both Angular velocity control mode and Position control mode.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 31

Profile modes
In Joint and Multi-turn control modes, 4 different angular velocity profile control schemes are available:

Mode Angular velocity
profile value

Acceleration profile
value

Notes

Step 0 X Angular velocity = Angular velocity limit (0x10).
If angular velocity limit = 0, then maximum achievable
angular velocity.

Acceleration = maximum achievable

Rectangle > 0 0 Angular velocity = Angular velocity profile value

Acceleration = Acceleration limit (0x12).
If acceleration limit = 0, then maximum achievable
acceleration.

Triangle > 0 > 0 Angular velocity = constantly changing

Acceleration = As specified

Trapezoidal > 0 > 0 Angular velocity = changing until angular velocity profile
value is reached. This angular velocity is maintained until
the deceleration point is reached.

Acceleration = As specified

1. Step
In step mode, the acceleration and angular velocity profiles are not used. Instead, the horn accelerates at a
maximum rate to the maximum angular velocity before decelerating at a maximum rate to the goal position.

2. Rectangle
In Rectangular mode, the horn accelerates at a maximum rate to the specified angular velocity profile value.
The horn then maintains the calculated angular velocity profile value until reaching the goal position minus the
deceleration time. The horn decelerates at the maximum rate.

3. Triangle
In Triangular mode, the horn accelerates at the calculated acceleration profile trajectory value.
The angular velocity of the horn at the point when the horn starts to decelerate towards the position setpoint, is
less (or equal) to the specified angular velocity profile value. The resulting profile is thus triangular.

4. Trapezoidal
In Trapezoidal mode, the horn accelerates at the calculated acceleration profile value until the calculated
angular velocity profile value is reached. This velocity is then maintained before decelerating to the position
setpoint.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 32

5.4.3.2 Joint (single-turn) and multi-turn position modes
A front-facing view of a Mercury servo is shown below.

In the (default) joint mode, the actual position register values at π and -π radians 8191, and -8192 respectively. This
is with a Home position offset register value of 0.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 33

5.4.2.3 Clockwise (CW) and counterclockwise (CCW) angle limits
CW and CCW angle limits register are only relevant in joint mode. In multi-turn mode, the CW and CCW angle limits
are ignored..

5.4.2.4 Horn position offset
This 2’s complement figure represents the horn position offset.

In joint (single-turn) mode (where the maximum rotation is 2π radians [360°]), the valid range is -4096→4095. A value
outside of this range will be considered an error condition, and a value of zero will be assumed.

In multi-turn position mode, the range is -4,177,920 → 4,177,919. This is the equivalent of +/- 255 turns.

In the above image:
● The real position is π/4 radians [45°]
● The home position offset is -2048
● The actual position register value is 0.
That is, the actual position register value = real position + home position offset.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 34

5.4.4 Mercury velocity control

5.4.4.1 Wheel controller architecture
For velocity control, Mercury servos use a 2-stage cascaded controller consisting of a:

● velocity controller
● current controller.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 35

In Wheel operating mode, the servo will always attempt to maintain the target angular velocity. The velocity PI
parameters are used to maintain the actual angular velocity at the target angular velocity. The profile acceleration
register value is used to control the acceleration to the target velocity.

Target angular velocity
The target angular velocity register maintains the target velocity in milli-rad/s. That is, a register value of 1000 equates
to 1000 milli-rad/s⇔ 1 rad/s⇔ 9.549 rpm.
The maximum angular velocity is approximately 20 rpm.

Bit 15 of the target angular velocity register maintains the direction of rotation:
● 0⇔ counterclockwise (CCW)
● 1⇔ clockwise (CW)

Note that the target angular velocity register is distinct from the profile angular velocity profile register.

Proportional (velocity) gain
See details above.

Integral (velocity) gain
See details above.

Feedforward (current) gain
See details above.

Acceleration profile
See details above

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 36

5.4.5 Torque mode

In Torque mode, the target angular velocity is ignored. Instead, the servo will attempt to maintain a target torque. The
result of this is that the angular velocity will depend only on the target torque setting and the load on the servo.

In Torque mode, the following parameters are ignored:
● Target angular velocity
● CW and CCW limits
● Goal position
● PID (position and velocity) parameters

Bit 15 of the target torque register maintains the direction of rotation:
● 0⇔ counterclockwise (CCW)
● 1⇔ clockwise (CW)

5.4.6 Stepper mode

This control mode allows for the straightforward connection of Mercury digital servos to CNC-type controllers with
STEP and DIRECTION outputs. Unlike conventional open-loop stepper motors, the Mercury servo’s control electronics
will ensure the correct output response based on input steps and chosen control parameters.

The two opto-isolated digital inputs (D1 & D2) are active low. See the Connection details diagram for more
information. Please note that most CNC controllers allow the output polarity of their STEP and DIRECTION pins to be
specified.

Input D1 (pin4) must be connected to the STEP output of the CNC controller.
Input D2 (pin 5) must be connected to the DIRECTION output of the CNC controller.
The 5v common (pin 6) must be connected to the 5 volt output of the CNC controller.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 37

The CNC controller motor limits should ideally be set to the following settings:
● 3600 steps per 360° (0.1° degrees per step)
● 1000 steps per second
● Max acceleration/deceleration pulse period <= 50ms

For optimal tracking of the incoming step pulses, ensure that acceleration & deceleration figures are not too high.

5.5 Is moving

The Moving register is set to 1 if the Mercury digital servo is deemed to be moving. Otherwise the Moving register is
set to zero indicating that the servo is stationary.
Determining whether the servo is moving or is stationary is done by comparing the actual velocity with the moving
threshold value. If the (absolute) actual velocity exceeds the threshold value, the servo is deemed to be moving.
5.6 Hardware status

This register maintains details of the current hardware status. It’s primary function is to protect the Mercury servo from
out-of-range conditions:

Bit Status condition Description

7 n/a

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 38

6 Motor shutdown This error can occur following an FOC (field oriented control) error that
has forced the motor to shutdown.

5 Overload error This error can be the result of one of the following conditions:
● An overcurrent alarm has been generated by the BLDC driver.
● An under-voltage has been detected by the BLDC driver

The control_enable register is set to zero when this error occurs.

4 Angle limit error The horn angle is either:
● Outside of the specified CW or CCW limits in Joint mode
● > +/- 255 revolutions from the zero point in Multi-turn mode

3 Encoder error An encoder error has been detected.

The control_enable register is set to zero when this error occurs.

2 Overheating error The internal temperature of the Mercury servo has exceeded the
specified temperature limit. This can be the result of one of the following
conditions:

● Measured temperature (97) has exceeded the temperature limit
(11)

● An over-temperature alarm generated from the tmc6200 driver.
This temperature limit is fixed at 120°C.

This error results in a device shutdown. To recover from a shutdown, the
device must first be powered off. The device will not be re-enabled until
both of the above conditions are no longer true.

In the event of a tmc6200 driver error, the exact details of the error can
be seen at register XXXX. See the “Register fields” tab for details.

1 Motor not synchronized The motor is not synchronized with the encoder index

The control_enable register bit 0 cannot be set while the motor is
unsynchronised.

0 Input voltage error The input (supply) voltage is either:
● less than the specified minimum voltage limit
● greater than the maximum specified voltage limit

The control_enable register is set to zero when this error occurs.

6. Diagnostics

6.1 LED states

The following table details the various possible LED states of the Mercury servo motor:

LED State Description

Solid RED The servo is initialising.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 39

Solid GREEN The servo is both initialised and synchronised

GREEN LED toggles between ON and OFF every 1s. The servo has been initialised, but the motor has not
been synchronised.

RED LED toggles between ON and OFF every 1s. Overload error, encoder error or input voltage error.

RED LED toggles between ON and OFF every 0.25s. Overheating error.

Toggling between RED and GREEN LEDs every 1s. Motor shutdown has occurred.

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 40

7. ROS2 integration

7.1 Github repositories

GitHub repository Branch Description

dynamixel_hardware rolling ROS2 Iron: ros2_control implementation for mercury & dynamixel servo
motors.

dynamixel-workbench mercury-ros2 ROS2 Iron: Implementation that supports mercury servo motors while
maintaining support for dynamixel servos.

MercurySDK ros2 A modified version of the MercurySDK that allows integration with
dynamixel-workbench.

mercury_ros2_examples master Example robot description(s).

7.1 Building a ROS2 Mercury example

1. Create a workspace folder:

mkdir -p ~/mcy_ws/src
cd ~/mcy_ws

2. Clone the required GitHub repos:

cd src

git clone git@github.com:RobotArticulation/dynamixel_hardware.git
git checkout rolling

git clone git@github.com:RobotArticulation/dynamixel-workbench.git
git checkout mercury-ros2

git clone git@github.com:RobotArticulation/MercurySDK.git
git checkout ros2

git clone git@github.com:RobotArticulation/mercury_ros2_examples.git

3. Build the workspace:

cd ~/mcy_ws
colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 41

mailto:git@github.com
mailto:git@github.com
mailto:git@github.com

4. Running an example robot description:

This example connects a single Mercury servo and allows control of the servo via the chosen ros2 action interface. In
this example, we use the FollowJointTrajectory action.

Servo configuration:

Set the Mercury servo’s configuration in:

~/mcy_wd/src/mercury_ros2_examples/mercury_description/urdf/mercury.ros2_control.xacro is correct for
the connected servo motor(s).

Terminal #1:

cd ~/mcy_ws
source install/setup.bash

ros2 launch mercury_description mercury.launch.py

Terminal #2:

Send goal positions:

ros2 action send_goal /joint_trajectory_controller/follow_joint_trajectory
control_msgs/action/FollowJointTrajectory -f "{
trajectory: {
joint_names: [a_axis_servo_to_a_axis_horn],
points: [
{ positions: [1.5], time_from_start: { sec: 2 } },
{ positions: [-1.5], time_from_start: { sec: 6} },
{ positions: [0], time_from_start: { sec: 8 } },
{ positions: [0], time_from_start: { sec: 10 } }
]
}
}"

Robot Articulation • info@robotarticulation.com • WWW.RobotArticulation.COM 42

